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We present a nonoverlapping domain decomposition method with local Fourier ba-
sis applied to amodel problem in liquid flames. The introduction of domain decompo-
sition techniques in this paper is for numerical and parallel efficiency purposes when
one requires a large number of grid points to catch complex structures. We obtain then
a high-order accurate domain decomposition method that allows us to generalize our
previous work on the use of local Fourier basis to solve combustion problems with
nonperiodic boundary conditions (M. Garbey and D. Tromeur-Dendb@omput.
Phys.145 316 (1998)). Local Fourier basis methodology fully uses the superposi-
tion principle to split the searched solution in a numerically computed part and an
analytically computed part. Our present methodology generalizes the Istali
(1993,J. Sci. Comput8, 135) method, which applies domain decomposition with
local Fourier basis to the Helmholtz's problem. In the present work, several hew
difficulties occur. First, the problem is unsteady and nonlinear, which makes the pe-
riodic extension delicate to construct in terms of stability and accuracy. Second, we
use a streamfunction biharmonic formulation of the incompressible Navier—Stokes
equation in two space dimensions: The application of domain decomposition with
local Fourier basis to a fourth-order operator is more difficult to achieve than for a
second-order operator. A systematic investigation of the influence of the method’s
parameters on the accuracy is done. A detail parallel MIMD implementation is given.
We give an a priori estimate that allows the relaxation of the communication between
processors for the interface problem treatment. Results on nonquasi-planar complex
frontal polymerization illustrate the capability of the methodg 2001 Academic Press
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1. INTRODUCTION

This paper is devoted to a numerical methodology that uses fully the superposit
principle and domain decomposition techniques with local Fourier basis. A simulation
a frontal polymerization (FP) with complex dynamics illustrates the capabilities of tt
method.

The main restriction that led us to develop this methodology is that our previous :
numerical simulation was limited to quasi-planar frontal polymerizations (FP). In [7, !
we used an adaptive domain decomposition method based on a pie@weebyshev
polynomial approximation in the direction of propagation of the fraatifection) and on
a Fourier approximation in the direction parallel to the frond{rection) for periodic as
well as nonperiodic boundary conditions. Some 1D mapping of the Chebychev collocat
points in thez-direction on each subdomain allows us to concentrate the points near the fr
location. Because the front was assumed quasi-planar, the mapping was independent ¢
x-variable, and the code simplicity follows. If the hypothesis of the quasi-planar structt
of the front is not valid, we have to increase the number of subdomains irrdhriection
in order to have enough points and subdomains to compute accurately the front along
x-direction, and we need to increase considerably the number of points xadinection
where no domain decomposition was introduced. The disadvantages of this option are
the use of a great number of points at some part of the computation where they are not re
needed, and (2) the loss of the parallelism efficiency of the methodology for large num
of strip subdomains [7].

In this paper, we use the same FP problem as a test case, but the methodology that w
velop follows a totally different philosophy in keeping the simplicity of the operators and tt
algorithm. We use no adaptivity, and we compute the solution with (local) pseudo-spec
Fourier approximations in such way that we can use efficiently on a parallel computer a1
direct solver per subdomain and a large total number of discretization points. Therefore
a priori knowledge of the structure of the solution is required. We expect that the questior
adaptivity for complex combustion front problem could be resolved as a separate issue u
an appropriate numerical generation of a 2D mapping applied to a regular grid struct
[16, 18], or with fictitious domain decomposition techniques as in [11]. Some exampl
of solutions of simple PDE problems computed with local Fourier basis on complex z
geometries can be found in [6].

The new methodology can be summarized as follows. Let us consider a model bounc
value problem written symbolically,

E)a—l:(x,t) + AlU](x,t) = F(U, x,t), VxeQc (0,27)4, B[U(X,1)]=00n03Q,

whereq is a positive integerA and B are linear differential operators, afda nonlinear
operator. We consider a semi-implicit multistep method for time integration as

Un+l+ A[Un+l] — ﬁ(Un~'~Un7p)

in domaing.
Our solution procedure to obtain™*! consists of (1) splitting the unknown"* into a
periodic solution, denoted [F:"*+1 of the inhomogeneous extended problem

Ul L A[UIFIH] — FU™ ...UM P), vx € (O, 21)9,
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where F is a smooth periodic extension & that must be defined properly, and (2) a
so-called corrector, denoté&t©1-"+1, solution of the following homogeneous problem:

ylelnt L Afutelntl) — o, wx e @, B[UIC] = —B[UIFI"] ongg.

This solution procedure is efficient if one can use fast direct solverd fdr"*+* and an
analytical or easy-to-compute approximation of the corrediét"+1 [3, 4, 6, 8, 19].

We further develop a nonoverlapping domain decomposition based on the same con
Each subdomain is solved with a similar splitting, but the correctors have to solve the ¢
ficial boundary condition at the interfaces. We refer to [13—15] for pioneer work on dome
decomposition with local Fourier basis applied to the Helmholtz's problem. However, nq
difficulties occur in the present application because the problem is unsteady and nonlir
which makes the periodic extension delicate to construct in terms of stability and ac
racy. In addition, we use a streamfunction biharmonic formulation of the incompressil
Navier—Stokes equation in two space dimensions: The application of domain decomposi
with local Fourier basis to a fourth-order operator is more difficult to achieve than that fo
second-order operator. The main advantage of the domain decomposition with local Fol
basis, from parallel implementation point of view, is to avoid the global transposition
matrices that appears in parallel fast Fourier transform [5], because of the localizatior
the data of the Fourier transform on each processor. Moreover, we show how to deco
adaptively, with respect to the Fourier mode values, the dependencies between subdor
of the domain decomposition.

The plan of this paper is as follows. Section 2 describes the governing equations of
frontal polymerization model problem with arbitrary gravity direction. Section 3 describ
the superposition principle used and the algorithms that follows for the reaction diffusi
system and the Navier—Stokes equation. In Section 4, domain decompositions with |
Fourier basis are introduced to extend the methodology for parallel efficiency purpose.
accuracy of the methodology and the influence of its parameters, such as the time s
the number of subdomains, and the length of the extension, are studied. Section 5 de
parallel MIMD algorithm implementation on a Digital Tru Cluster and discusses the paral
efficiency and scalability of the method. Section 6 presents numerical results obtained \
the new methodology for FP with a no-quasi-planar front structure. Conclusions on
advantages and limitations of the methodology are given in Section 7.

2. GOVERNING EQUATIONS

We consider the propagation of a reaction front in a liquid phase [20] with a simf
chemical reaction mechanism: The reactant A is converted to the final product B. T
modelincludes equations for the temperature and the concentration for the one-step chel
reaction, and the Navier—Stokes (NS) equations written in the Boussinesq approximat
The conservation laws lead to the following equations:

aT
Sr TV VT = kAT +u(T.C) 1)

aC
S0 V- VC = HAC —w(T.C) )
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VvV 1
Si HV YV = =S VR vAV + 68T — To)y )

V-V =0. (4)

HereT is the temperature; the concentration of the reactant ¥,the velocity of the
medium,p the pressureg the coefficient of thermal diffusiom the adiabatic heat release,
o the densityy the viscosity,u the mass diffusiong the acceleration of gravityd the
coefficient of thermal expansiofiiy the average value of temperatupethe unit vector in
the vertical direction, and (T, C) is the reaction rate. Usually is considered of the form

w(T,C) =ke F/RTy(C), ¢(C)=C",

wherek is the preexponential factdE is the activation energyg, the gas constant, amd
the order of the reaction.

For the direct computation of (1-4) we consider the reaction rate to be first order, i
n = linthe formula for the kinetic functiop(C). Moreover, we denotethe angle between
the gravity vector and theaxis. We use the biharmonic formulation of Navier—Stokes witt
W as the stream function:

aT/ot + (0W/0z)(dT/0x) — (0W/0x)(0T/9z) = AT + W

dC/ot + (0W/02)(dC/0X) — (0¥ /0X)(dC/0z) = e AC — W

T—-0 C—1 asz— —oo,

O] T ()
-1 C—0, asz— +oo,

0T/0x(0,z2) =0, o0T/ox(L,z)=0, Vz

0C/0x(0,z) =0, 9C/ox(L,z=0, Vz

0AW /ot = (W /0X)(0AW/3Z) — (0W/02) (0 AW /3X)
+ A?U — RPc090)3T/dx — RPsin@)dT/oz
¥ — 0, asz— —oo,
an (6)
v — 0, asz— +oo,
v(0,2 =0, (0¥/9x)(0,2) =0, Vz

v(L,2=0, (@¥/ox)(L,z)=0, vz

HereW denotes the source term given by the Arrhenius law,

zZT
W=Cexp— .
1+81-T)

The parameters are the Zeldovich numBesx %, the Prandtl numbeP = 2, the
Rayleigh numbeR, a dimensionless mass diffusienand the numbes = q/ Ty, where
Tp = Ti + q is the adiabatic temperature, afiids the temperature of the cold produst
The boundary conditions are nonperiodic in thelirection. The boundary conditions
on the other walls are defined according to the asymptotic behavior of the unknowns w
z — oo. Also, the length H of the discretized computational domairHl, H] in the
z-direction has to be large enough in order to have no influence on the dynamics of the fi

in the numerical computation.
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The coupling between the two models comes from the Boussinesq term, which invol
derivatives of the temperature in thedirection and eventually stiff derivative in the
z-direction, if the symmetry axis in the-direction of the computational domain makes
a nonzero anglé with the gravity vector.

The system has a well-known one-dimensional traveling wave sol@ligiz), Co(2),

v = 0,0 = 0). In addition, many different possible nonlinear regimes of the solution exi
[17]. They all depend on the specific value of the bifurcation or control parameters, sucl
the Zeldovich number or the Rayleigh number. This test case is relevantin demonstrating
validating the feasibility of our approach with local Fourier basis. Low-order methods f
on this test case except if one uses drastic mesh refinement to capture pattern formation
bifurcation values. These numerical difficulties usually lead to use of the spectral metho
in [2]. But the global transposition of data on a network of processors needed in the spe
method makes them difficult to parallelize [5].

3. SUPERPOSITION PRINCIPLE TO SOLVE (I) AND ()

The superposition principle is a concept widely used in physics. This section derives
methodology to solve the coupled systems of PDESs (I) and (I1). In both of the two conside
systems, the solutions and/or their derivatives exhibit strong variation. The main idee
the methodology developed to solve (1) is to introduce a shift on the unkndwarsed C,
which can be a numerical analogue of the traveling wave of the system and which me
the computation “amenable” to Fourier approximation.

3.1. Superposition Principle for the Reaction—Diffusion PDEs (1)

A convenient way to compute the unknowh&andC is to use the splitting

TX,2) = To(2 + Ti(X, 2 (7
C(x,2) = Co(2) + C1(X, 2), 8)

where(Ty, Cp) satisfies the required asymptotic behavior
To(=00) =0, To(o0) =1, Co(—o0) =1, Cop(o0) =0.

Typically, we take
1
To(2) = 5(1 +tanh2)), Co(2) =1— To(2).

The computation ofT;, Cy) is then amenable to Fourier approximation in théirection

on the finite but large interval-H, H). In fact, if H is large enoughTl;, C; should vanish
exponentially in the neighborhood &fH , andT;, C; can be interpreted as smooth periodic
functions of period 2. Because of the one-sided flame front propagation, the solutic
must be shifted in space occasionally to keep the position of the flame front roughly in
neighborhood of the central lire= 0. A possible way of getting an adaptive computation
with a regular discretization is to 18, Cy be a traveling wave solution of the system [10]
instead of an a priori hyperbolic tangent profile. Depending on the value of the bifurcati
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parametersT;, C; can be seen then as a possibly small perturbation of the so-called ba
solution.

For simplicity of notation in the following, we will denotd, C,) as(T, C). We use a
second-order semi-implicit backward Euler scheme for time marching that is explicitin t
nonlinear source terms:

T 2/3AtAT™ = 2T — 1/2T"1 — 2/3At (ATO +W(T" + To, C" + Cop)

N AW /3T, N aTn AW /3T, N aTn ©)
X 0z 0z 0z \ 9X X
CM1 _— 2/3AteAC™?! = 2C" — 1/2C"1 — 2/3At <eACo —W(T" 4+ To, C" + Cp)
aw" /9C, 9CM aw" (9Cy  C"
— — — . 10
Jrax<az+82) az(ax+ax>> (10)

We look for discrete Fourier expansion of the unknowns:

M;
T"(x,2) = Z T (x) explikz), (11)
k=M,

M,
C"(x,2 = > CIHHx) explika). (12)
k=—M,

The system of ODE equations for the mddis written as
(3/2AD) + KOTIH(x) — 9T (x) /9x? = Fy (13)
(3/(2A1) + ek®)CPT(x) — €d*CTA (%) /0x* = Gy, (14)
with homogeneous Neumann boundary conditions irxtidérection.
In order to compute for each Fourikimode the coefficientSTk”+l(x), C{j“(x)), with
Fourier expansion in the-direction, we use the technique of [8] (see also [13-15]) base
on the superposition principle and the construction of a smooth periodic extension of

right-hand sides. Let us restrict ourselves to the temperature equation, since the algor
is the same for the concentration equation. We split again the unknowns as follows:

T 00 = TP 0 + T, x [0, L]. (15)

Letd > 0,d € R, and let [Q L + d] be an extension of the doma(f, L). Let F_k(x) be
a smooth periodic extension &, (x) on the interval [QL + d]. We search for the. + d
periodic solution of the inhomogeneous problem

3/AY + KOTH 0 — 92T (%) /ax? = Fy, TP L +d periodic  (16)
Then we retrieve the homogeneous Neumann boundary condition satisffﬁﬂ*b;by
computing the so-called corrector termg]. These corrector terms satisfy the ODEs
(2/3at) + kKT x) — 82T x) fax? = 0,
9T /ax(0) = -3 /ax(0), 17)
AT Jax(L) = —a T /ax(L).
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The solution is written as

T X)) = avr k(X)) + Be wrk(X)), (18)
with

vrk(X) = exp(—/k2 + 2/(3At)(x — 0)), (19)
wr k(X) = exp(—/k2 + 2/(3At) (L — X)). (20)

The two-dimensional vector basis of this corrector space for kaohde can be computed
analytically once and for all. The coefficientsy, Bx) are then solutions of two-by-two
linear systems that are solved at each time step. We notice that the boundary correctiol
the left and on the right are numerically decoupled when the time/stép small enough
and/or the wave numbdéris large enough.

Our approach differs from that of Israel al. [13, 14] in the way we compute a suffi-
ciently regular periodic extension of the right-hand sides. Let us recall that the smoothr
of this extension is the essential limitation on the spectral accuracy of the method. M
precisely, if the right-hand side has regulai@§, the numerical scheme is of ordgr- 2
at most [12]. Let us notice that the order of the method is 2 at the artificial interfaces
and increases away from the discontinuity points. Further, the accuracy of the metho
relatively insensitive to the size of the extensitiithe number of modes is large enough [6].

When the right-hand side is a given analytical function that can be defined on the intel
[0, L +d], one could use (as in Israddi al. [13, 14]) a so-called bell function B that is
equaltoonein [O, L] and zero in the vicinity &f+ d/2. B times the right-hand side is then
a smooth periodic function of peridd+ d. Results of Averbuckt al.[1] show evidence of
the accuracy of their method for the Laplace equation or the Helmholtz problem. Howe
in our computation the right-hand side is given numerically at each time step only ins
the physical domain of computation. We therefore use a numerical procedure to deri
smooth extension of this function. We proceed as follows.

We consider the exact or computed values of the derivatives otil ordergatx =0
andx = L. The classical Hermite interpolation allows us to define a polynomial functic
P on [L, L +d] of degree g + 1 that interpolates the functioR with the following
conditions:

POWL) = EBY(L) POUL)=FP(L).,... PO®L)=FDWL),
. . . 21)
POL+d)=F2©0 PYL+d)=FY0,... POL+d) =F0.
The extended right-hand side is then
- [R, vxelo,L
F= o et (22)
P(x), VvxelL,L+d[.

In practice, we ask for €2 continuity condition at the end points= 0 andx = L + d.
The derivatives are computed by using sixth-order one-sided finite differences.

To summarize, the unknownd’, C) at each time step can be computed with two-
dimensional FFTs complemented by some lower order cost numerical procedures, su
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Hermite interpolation, to get the right-hand side of the equation defined properly and son
posteriori combination of given basis functions for the corrector terms. Note that these ¢
rections are exponentially negligible outside some neighborhood of thawal, x = L

for a small time step.

3.2. Superposition Principle for the NS Equation (ll)

We consider the following semi-implicit Euler scheme for the time discretization c
Eq. (6) asin [8]:

AWML ALAZEML — AWM /IX)(AY"/32Z) — (V" /32)(DAW" /3X)

+ A" — Atf(X, Z,t)), (X,2) € (0,L) x (—H, H), 23)
w™0,2) =0, (BU™/9x)(0,2) =0, ze (—H, H),

v 2 =0, @U"/ax)(L,2) =0, ze (—H, H).

We look for az-periodic solution of period & with H large. As a matter of facty vanishes

exponentially whenz| goes to infinity.H is taken large enough in order that the boundary

conditions in thez-direction have no influence on the dynamic of the combustion wave.
The termsf andW at timet, are approximated by the discrete Fourier expansion,

N2 g
2

f(X,2t,) = Z fi(x) v, (24)
k=%
By

VX zt) = Y BReo €Y (25)
k=%

with y = EH7 For simplicity of notation we will assume in the following thidt= 7.
Let F"(x, z) be the right-hand side of Eq. (23). From the approximation,

@W"/9x)(dAY"/3y) — (3W"/3Y)(dAW"IX)
iy EY ST (B (B - KBE) — pka (B - K3ED)) | (26)
k:*TNZ ki+ko=k

we obtain the discrete Fourier expansionFof. We then have to solve the uncoupled
fourth-orderN, ODEs at each time step. Fr= 0 we have

Lo[571] = (B0%1)" — At(I2+)" = B3, x € (0, L), 1)
Wgri(0) = (¥g*h)'(0) = WgthL) = (¥ (L =0,
and fork # O:
Li[Bg] = (B — k2Ot — At (9™
=22 (P kAP = B, x e (0, L), (28)
o) = () '0) = L) = (W' =o.
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In order to computé/,'(‘“(x) with Fourier in thex-direction as well as in the-direction,

we use the technique of [8] (see also [13-15]) based on the superposition principle anc
construction of a smooth periodic extension of the right-hand sides. We split the unknoy
as follows:

P oo = WM o0 + UM, x e (o, L. (29)

This splitting is efficient because one can use a fast Fourier transform to coﬁﬁﬁb‘ﬂél
and an analytical formulae fcfr&c]’““. In what follows, we will omit subscrigt andn + 1
to simplify the notations. Led > 0,d € R, andlet[Q L + d] be an extension of the domain
0, L). Let F_k(x) be a smooth periodic extension Bf.(x) on the interval [OL +d]. We
look for theL + d periodic solution of the nonhomogeneous problem

L[UF] =F, xe (O L+d), WP L+dperiodic WFlect™R).  (30)

Then we retrieve the homogeneous Neumann and Dirichlet boundary conditions satis
by ¥ by computing the so-called corrector ted#°]. These corrector terms satisfy the
ODE problems

Ly [¥19] =0, x € (0, L),
w0 = —9tF ), (910 = —(WIF1)(0), (31)
WLy = —wlFlL), (PC) (L) = — () (L).

Since the operators are fourth-order linear operators with constant coefficients, one c:
compute the basis functions for the fourth-dimensional vector space of the solutions ¢
and for all. The solution is written aAB&C] = akuk(X) + Brwk(X) + wrk(X) + dksk(X), and
the basis functions are explicitly given with formulae ko& 0,

1 1
vo(X) = exp(—ﬁ(x - O)>, wo(X) = eXp(— (ﬁ“— - X)),

ro(x) =X, s(x) = (L —x),

and fork # 0,

(X)) = exp(—q/k2+ Ait (X — 0)), wi(X) = exp<—1/k2+ Ait (L — x)),

re(X) = exp(—|k| (x = 0)), s(x) =exp(—[K| (L —Xx)).

The coefficients(ay, Bk, v, 6k) are the solution of four-by-four linear systems that are
solved at each time step. The boundary conditions on the left and on the right are numeri
decoupled when the wave numbers large enough. The derivatives 61{(0] are readily
computed from the previous formula. The derivative@bpf] follow from its discrete Fourier
expansion. We assemble the right-hand side of Eq. (23) at each time step using spli
(29) on the derivatives as well.

Notice that the smoothness of the extension is the essential limitation on the spectra
curacy of the method. More precisely, if the right-hand side has reguEtitthe numerical
scheme is of ordey + 4 at most.
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However, the parallel efficiency of this method with no domain decomposition poses
classical problem that one has to do a global transpose of the unknown fields on a netv
of processors. The introduction of the domain decomposition procedure in the next sec
solves this problem.

4. DOMAIN DECOMPOSITION WITH LOCAL FOURIER BASIS

We extend the previous methodology by introducing domain decomposition ix-the
direction for each k-mode equation (13 and 14). We split_[[0into nd nonoverlapping
subdomains of not necessarily equal sizes. In particular, the size of the subdomains
the boundary conditions of the problem can be smaller, leading to a smaller space <
To simplify the presentation here, we take subdomains of equal size and we denote t
generically ag0, I). We first detail the domain decomposition for each system (1) and (Il
of the model problem. We secondly investigate numerically the influence on accuracy
each parameter of the domain decomposition method.

4.1. The Domain Decomposition Algorithm

For each subdomain, we apply the same splitting on the Fourier modes of the unkno
as described above for the problem (1), and we impose in additio€theontinuity of
the solution at the artificial interfaces. We compute the extension of the right-hand si
for each subdomain and its corresponding periodic solution with a local Fourier discr
approximation. This part of the algorithm is strictly what we had for the single doma
case, but it is applied for each subdomain in parallel. Then we compute the corrector t
on each subdomain in order to retrieve tbé& continuity of the solution at the artificial
interfaces. Let us _den_ol(e;,i, wﬂ() as the set of basis functions for the corrector in eacl
subdomainj and(e, B.) as the corresponding coefficients; in the local coordinate syste
of the subdomain, the basis functions are identical to (19 and 20). With four subdomai
for example, the matrix of the interface problem for the unknown coefficient vacter

(a&ﬂ ﬂl:(L» al%a ﬂl%v asa ﬂsa aév ﬂl?)T IS

Vi) w'E(0) 0 0 0 0 0 0
ve  wi)  —©O  —wf© 0 0 0 0
Vi) wil) —vE0) —w(0) 0 0 0 0
0 0 v  wi® O -—wiO 0 0
0 0 vEhH wi) -0 -wi0 0 0
0 0 0 0 vE’(l) wE’(l) —v,‘(‘(O) —wﬁ(O)
0 0 0 0 VR wR() —vE0) —wk(0)
0 0 0 0 0 0 v w'p(l)

Let us remark that the matrix is time independent.

To solve the Navier—Stokes problem (II), on each subdomain we apply the same splitt
of the unknowns as described above for the problem (1), and in addition we impose
C3 continuity of the solution at the artificial interfaces. We compute the extension of tl
right-hand sides for each subdomain and its corresponding periodic solution with a lo
Fourier discrete approximation.
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Note that for mode 0, the operator with a periodic boundary condition is singular. T
solution is then defined up to a shift. However, the corrector term subtracts this shift :
the superposition principle gives the unique solution of (27).

We compute the corrector term for each subdomain in order to retrie@’tbentinuity
of the solution at the artificial interfaces. Let us denatg wy, 1, s}) as the set of basis
functions for the corrector in each subdomgjrand(a}, 8., 1/, 81) as the corresponding
coefficients; in the local coordinate system of the subdomain, the basis functions are iden
to the monodomain basis function. With two subdomains for example, the matrix of t
interface problem for the unknown coefficient vecloe= (o, AL, yit. 8L, a2, B2, y2. 82)7
writes

vi0) w0 ri0) sk0) 0 0 0 0
Vi) w0 10 Sk 0 0 0 0
v wi@) @) s RO —wf©)  —rf©)  —s{(0)
Vi) wikO) k) sk RO —wRO) {0 —s§O)
Vi) wi® ) s RO —wRO) 1RO —s{O)
VR w” i) rEl) SsTE1) —v"2(0) —wE(0) —r"3(0) -s"2(0)
0 0 0 0 O wi®) RO KO
0 0 0 0 WED  wRO RO SR

4.2. The Decoupling of the Interface Problem with Respect to Mode

For small time steps or large wave numisethe local interface problems become ap-
proximately decoupled because of the exponential decay of the basis function. Then one
replace, for modek larger tharkg, the interface problem operatéy by an approximate
interface operatoBy where the coupling terms between far subdomains are neglected. T
property is very interesting in term of parallelism because the data dependencies of
interface problem on each subdomain only depend on the two neighbor subdomains. T
interface problem operatorgy and By for the temperature solution and the concentratior
for nd = 4 subdomains of local size, can be written witht = /k2 + 2./(3- At), and
n=e%4tas

[ —¢ &y O 0 0 0 0 0]
n 1 -1 - 0 0 0 0
—-€n & & —&n O 0 0 O
0 o 1 -1 - 0 0
A = 4 7 (32)
0 0 -én & & &3 0 O
0O 0 o© 0 1 -1 —p
o o0 o 0 —&n ¢ & —é&n
| 0 0 O 0 0 0 &n —& |
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-£ 0 0 0 0 0 0 O]
0 1 -1 0 0 0 0 O
0O & € 0 0 0 0 O
0 0 01-10 0 O
By = (33)
0 0 0 & £ 0 0 O
0 0 000 1-1 0
0 0 00 0 ¢ &£ O
L0 0 0 0 0 0 0 —¢]

Similar matrix operators can be written fGrandW¥. The cut leveky separates the Fourier
mode set in two subsets. The first subset includes the modes leds, tloanvhich the in-
terface problem involves communications between all the subdomains. The second st
includes the modes greater or equaddgéor which the interface problem involves communi-
cations only between the two adjacent subdomains. The vakgésaddetermined as follows.

Let A Tl = RHgGMerfcq TIFl) pe the exact interface problem. We want to know wher
it is possible to replacéy by By.

Let Bk(Tk[C] +6) = RHS'”‘e”ace(T,fF]) be the approximate problem. A direct computation
leads to the following error bound on the perturbatiaaf the corrector ternt, k[c]:

181100 < || ACH] o A = Blloo || B o [[RHS™ (T | (34)

o
For a given set of the numerical method'’s parametierk, At), one obtains a priori the
constant|| A Yl se | Ac — Billoo | B lloo. The time-dependent teriRHSMerfacq TPl
must be obtained in the core of the numerical simulation itself.
Figure 1 (respect. 2) gives the value of log L8 *llooll Ax — Billoll By *lloo) for the
interface problem of temperature Eq. (9) (respect. streamfunction Eq. (23)) with respec

Amplification Factor bound of the error for the Temperature, dt=0.005 L=4x
5 T T T T T T T T T

|
a

log10(11B; I, 118, B I, I1A"11.)
|
3

15

_20 1 1 1 1 1 L 1 1
0 10 20 30 40 50 60 70 80 90 100

mode kept with coupling interface subdomains

FIG. 1. Factor of the bound Error estimation f§f! for different values of nd subdomains.
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Amplification Factor bound of the error for the ¥, dt=0.005 L=4 &
5 T T T T T T T T T

log 10418, 11, 1A, -8, 1., IA.1],)

1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100
mode kept with coupling interface subdomains

FIG. 2. Factor of the bound Error estimation fé{“! for different values of nd subdomains.

the modek, and for different numbensd of subdomains. The time stepAd = 0.005, and
the width of the subdomainsiIs=4- z/nd.

These results clearly show that the valuégincreases with the number of subdomains.
It is a consequence of the fact that for a given global domain, the exponential decay
the corrector basis function in variabfe= x/| is slower when the number of subdomains
increases. In practice, a factor error bounds of°lfor nd = 16 is reached with keeping
few modesy = 40 for ¥ andky = 15 for T).

Similarly the rate of decay proportional €0/X* of the corrector basis function fdr and
C is slower than the rate of decay of the corrector basis proportiomaiis®+2/GAbx for
the streamfunction. Consequentty,is larger for¥ than forT andC.

As we want||§||. to be less than a set tolerance vatyave can determine adaptively
the value okg at each time step with respect to the value of the Fourier solution-depend
term |RHgerfacg TPy .

To anticipate the results of Section 6, we show in Figs. 3and 4 an example of the compt
values of the| RHG"erfacqp!Fly| . and [||[RHSMerfacq TPl | for four subdomains with
128 Fourier modes for the complete domain in thdirection and 256 modes for the
z-direction. The parameters of the numerical simulationzre 7.8, R = 1.5, 6 = 9(°,

At = 0.005.

In conclusion, combining the results of Figs. 1 and 2 with Fig. 3 and the estimate (3
we see thakg is 5 for T for the 8 subdomains case, akgis 13 for ¥ with § < 102 for
the 4 subdomains case.

4.3. Numerical Accuracy of the Domain Decomposition Method

We are going to test the accuracy first of the domain decomposition with respect to
number of Fourier modes and the number of subdomains. We consider fourth-order w
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log10(sup,,,,,[RHS ™™ **(¢ly) with respect of the mode k
5 T T T

|
o

log10(sup,,, ,IRHS ™2 p{Fly)
A L
L4, o

-o5 1 1 1 1 1
0 50 100 150 200 250
Modes k

FIG. 3. Example of the maximum computed vaIuestﬂS'”‘e”ace(\IILF]) on the interfaces involving in the
interface problem.

equation analogous to (28) with H-periodical function insteadwf2riodical function. We
force theright-hand sidléﬂ suchthatthe fourth-order polynomiel % (x — 47)?/(16% %)

is an exact steady solution. We use the time marching scheme starting from the
vial initial condition until convergence to the steady solution is reached. We measure

log1 D[supﬁmmHSi"mace”Lﬂ}l] with respect of the mode k
-45 T T T

T T

50 100 150 200 250 300
Modes k

FIG. 4. Example of the maximum computed valuesRifiS"e™5T 1) on the interfaces involving in the
interface problem.
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TABLE |
Accuracy with Respect to the Number of Subdomains

Mode 1 Number of subdomains

N, = 256 2 4 8 16

N, =16 4.2e-7 2.6e-6 8.8e-7 4.2e-7
N, =8 1.2e-5 5.5e-6 2.6e-6 1.3e-6
N, = 128 2 4 8 16

N, =16 1.8e-5 1.0e-5 4.5e-6 2.4e-6
N, =8 7.9e-5 3.9e-5 1.8e-5 9.9e-6

difference between the converged numerical solution and the exact steady solution in nr
mum norm.

Table | gives the error in a maximum norm for the computed solution correspor
ing to the wave numbek = 0 andk = 1 and several different numbers of subdomains
The total number of discretization points in the physical domainNg. Zhe number of
discretization points used for the extension N; Zor each subdomain. The number of
Fourier modes per subdomain depends on the number of domgaiasd it isNx/ng + N;.
The time step isAt = 0.1. The size of the domain of computation is given lHy= 25
andL = 2r.

We see in all cases thal, = 16 gives better results thawy = 8, and that the influence
of the number of extra mods, gets significant when the number of modes per subdoma
is not large enough.

The results of this table for mode= 1 are always better than the corresponding result
for the zero mode no matter the size of the extension. In particular, the error decreases
the number of subdomains for mode one. We observe the opposite behavior for the
mode result except for the large number of Fourier modes per subdomairN;ase266
andN, = 16).

It is important to notice that as the problems (27) and (28) are singular perturbat
problems when the time steft is small and/or the wave numbkiis large, the domain
decomposition method can be sensitive to these parameters. Let us now study the sens
of the method to the time step, wave numkgaind the size of the extension per subdomain
with the same set df dependent boundary value problems.

Table Il gives the error in maximum norm depending on the percentage of the extens
i.e., 100x d/(L + d) and the number of Fourier modbk for different couplegk, At) of
time steps and wave numbers and four subdom&lpss the number of Fourier modes per
subdomain including the extension.

We observe that the accuracy of the method deteriorates when the time step goe
zero: This is no surprise since the problem becomes more and more singwaigass
to zero. Eventually, the time-dependent schemes diverge for the zero mode equation i
space step is larger than the boundary layer thickg@ss or if the extension is not large
enough.

The comparison between results foe= 1 andk = 10 or 30 with the same time step
shows that accuracy deteriorates whagrows. The thickness of the boundary layer of the
wave equation is,/ki2 + At, and this phenomenon can be interpreted as above. Howev
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TABLE 1l
Influence of the Parameters on Accuracy

50% 25% 12.5% 6.25%

k =30,At =0.1
16 2.89e-4 1.66e-3 7.06e-3 2.20e-2
32 3.99e-5 2.54e-4 1.55e-3 7.52e-3
64 5.02e-6 3.23e-5 2.18e-4 1.45e-3
128 5.57e-7 3.26e-6 2.19e-5 1.62e-4

k =30,At =0.01

16 2.90e-4 1.66e-3 7.07e-3 2.20e-2
32 3.99e-5 255e-4 1.55e-3 7.53e-3
64 5.02e-6 3.23e-5 2.18e-4 1.45e-3
128 5.57e-7 3.26e-6 2.20e-5 1.63e-4

k = 30, At = 0.005

16 2.90e-4 1.67e-3 7.08e-3 2.2le-2
32 4.00e-5 2.55e-4 1.55e-3 7.54e-3
64 5.03e-6 3.24e-5 2.18e-4 1.45e-3
128 5.58e-7 3.27e-6 2.20e-5 1.63e-4

k =30,At =0.001

16 2.94e-4 1.69e-3 7.15e-3 2.22e-2
32 4.05e-5 2.58e-4 157e-3 7.61le-3
64 5.09e-6 3.28e-5 2.21e-4 1.47e-3
128 5.65e-7 3.3le-6 2.23e-5 1.65e-4

the amplitude of solutiod, should decrease with respect to the wave nurkldependency
on the regularity of!. As reported in Section 6, this phenomenon does not significant
affect the accuracy of the overall solution.

In all cases, itis also significantly better to take a large extension of the subdomain rat
than a small one. We speculate that small extensions lead to stability problems of the
marching scheme.

Finally, we have checked that the method is at least of order 5 for moded) dne- d) =
50% or 25% and\t < 0.01. The order of the method was computed by involving the large:
Ny values. The order of the method for the modes greater than 0 is less dependent ol
valued/(L + d), but differs following the mode value: (order 3.2 foek30, order 4.3 for
k = 10). Nevertheless, the decrease of the order of this convergence is compensated b
fact that the module of the Fourier coefficients can decrease steeply with the increase o
mode value.

5. PARALLELISM OF THE METHODOLOGY

This section is devoted to the parallel implementation of the methodology on a multif
instruction multiple data (MIMD) computer architecture. We show how to overcome tt
loss of efficiency that the gathering of the interface problem constitutes. Then we study
efficiency of the implementation using the message passing interface (MPI) library ol
distributed memory multiprocessor architecture.
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5.1. MIMD Implementation

If we consider the parallelization of the local Fourier basis on one domain, we have
face the parallelization of the Fourier transform. Usually this parallelization consists
splitting the set of Fourier modes between several processors. The Fourier mode equa
are solved then in parallel, but all the solution Fourier modes have to be gathered on e
processor to build the solution in the physical space. This transposition of the Fourier mc
leads to a large amount of data communication from all processors to all processors,
deteriorates the parallelism efficiency of the method. Therefore, the main advantage o
domain decomposition with local Fourier basis is to avoid this global transposition, beca
of the localization of the data of the Fourier transform on each processor. Several stey
the domain decomposition with local Fourier basis algorithm—as the computation of 1
Fourier part of the solution on each subdomain, the computation of the derivatives,
the computation of the correction once the coefficients in the vector corrector basis
computed—can be done independently on each subdomain. Thus, the methodology ¢
high potential of parallelism.

The break of parallelism arises from the resolution of the interface problem, cor
sponding to the continuity of the solution and solution derivatives at the interface. T
assembly of the right-hand side of the linear system and the computation of the corre
coefficients require data that belong to two or all subdomains. Thesénrsitu infor-
mations need to be sent (respect. received) through the communication network to
spect. from) the others processors. Each communication between processors has ¢
that depends on the bandwidth of the communication network and on the start up |
resenting the incompressible time needed to establish the communication. Consequg
a parallel efficient implementation needs to minimize the time spent in communicati
processes.

A straightforward MIMD implementation can be summarized in the two following step:
The first step builds the interface problem RHS, which involves the contribution from eg
subdomain of trace derivatives of the Fourier term. This can be done by sending fr
all processors to all processors each local contribution, and then adding each rece
contribution (with the minus sign) at the right subscript position of the interface vector. .
the end of this step, each processor gets the global interface RHS vector. The seconc
solves redundantly the global interface problem on each processor. Then each proc
gets the components of the corrector of the subdomain that it has in charge.

One can take advantage of the no-blocking messages facility that hides communice
cost by computation. A no-blocking send or receive starts the communication process
then gives the control to the next instruction with no “rendezvous” for the terminatic
acknowledgment. The termination communication process must be checked with a wai
instruction. Before this checking point, the send or receive of the data is not guarante
Table 1l gives the algorithm of this straightforward implementation with local Fourie
basis:

Further, according to Section 4.2, we can take advantage adaptively of the poss
decoupling of the local interfaces problems within truncation error accuracy according
the wave numbers, the time step, and estimate (34). This allows us to minimize the nun
of the global communication and to reduce the size of the linear system per modes tha
have to solve redundantly. The time cost of the nonparallel part of the algorithm is tf
going down in value.
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TABLE 11l
Algorithm | of the Straightforward Implementation of the
Domain Decomposition Method with Fourier Local Basis

1. Startthe no blocking receive from all processors of the trace of Fourier Term.

2. Compute Fourier solution and Fourier solution derivatives traces at
boundaries and artificial boundaries

3. Start the no blocking send to all processors for all modes of the traces
of Fourier solution and Fourier solution derivatives

4. wait for the receive completion of step (1)

. Assemble the interface RHS for all modes

6. Solve redundantly on all processors the interface problem of size 2mdl
for T andC (respect. 4ndk 4nd for W)

[

Table IV summarizes the algorithm Il strategy of the domain decomposition with loc
Fourier basis with adaptive decoupling of the interface problem. In particular, it shows hi
to overlap the communication from all processors to all processors with the computatior
the decoupled interface problems.

Algorithm Il is a more sophisticated implementation of the local Fourier method the
algorithm I, and we present in the next section our experiments on a parallel computer.

5.2. On the Performance of the Parallel Algorithm

The target parallel computer is a True cluster from Compag. We use our system v
four hypernodes linked by a memory channel hardware. Each hypernode has four a
processors ev5 cadenced at 400 MHz with 4 MB of cache each and between 512 MB
852 MB of shared memory. The parallelism measurement is based on the elapsed tir
perform 100 time steps.

TABLE IV
Algorithm Il Implementation of the Domain Decomposition Method with Local Fourier Basis
with Adaptive Decoupling Interface Problem for the Low and the High Modes

1. For j= 1:nd, no-blocking receive of the traces at the artificial boundaries of Fourier solution and Four
solution derivatives of mode ko, End
2. Fork < ko, no-blocking receive of the traces at the artificial boundaries of the Fourier solution and soluti
derivatives for thekth (high) mode, End
3. Compute Fourier solution and Fourier solution derivatives at the artificial interfaces and boundaries.
4. For j=1:nd, no blocking send of the traces of Fourier solution and Fourier solution derivative
for modes> kg, End.
5. Fork < kg, no-blocking send of the traces of Fourier solution and Fourier solution derivatives for the hi
modes, End.
6. Fork < ko, Wait for the no-blocking receive of step 2)
(i) Assemble thekth mode of the interface RHS.
(i) Solve the interface problem of sizexd4 for T andC (respect. 8« 8 for &) End.
7. For j=1:nd, Wait the no-blocking receive of Low Mode from subdomain j, End.
. Assemble the Interface RHS for low mode.
9. Solve redundantly the interface problem of size 2rd2nd for T and C (respect. 4ndx 4nd
for W) for k < kg

[oe)
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TABLE V
Scalability of the T and C Solver

MZ = 64/Processors 2 4 8 16

Nx =32, N1=28 100.0% 95.16% 91.48% 81.74%
Nx = 64, N1=56 100.0% 93.19% 93.19% 86.45%
Nx = 128, N1= 112 100.0% 94.57% 94.84% 89.44%

MZ = 128/Processors 2 4 8 16

Nx =32, N1=28 100.0% 96.49% 95.65% 89.84%
Nx = 64, N1=56 100.0% 98.09% 96.12%  91.59%
Nx =128, N1=112 100.0% 97.06% 95.66%  91.90%

e First, because of memory constraints on the memory channel, we restrict ourse
to test the scalability and efficiency of the parallel algorithm | for the reaction—diffusic
system ((1) and (I1)) up to 16 processors. IM} be the number of Fourier modes used in the
direction of propagation of the frort{direction). We seM, to be 64 or 128, (i.e., 128 or 256
discretization points) for the performance evaluation,Muin production runs can easily
go up to 256 and further. LetN, (respect. X;) be the number of regular discretization
points used in [DL[ (respect. in the extensiorL| L 4 d[). The total number of modes
in x-direction is thenN, = N; + N,. We restrict ourselves to have the same number ¢
processors as subdomains.

Table V gives the scalability of the method. The size of the global domain increases
the number of processors used increases. A method has a perfect scalability if the ela
time to solve a problem of sizd on 1 processor is the same as the time to solve a proble
of sizeP x N on P processors. We define the scalability of the method as the ratio of the
two elapsed times. The ratio defining the scalability usually decreases with the numbe
processors because of the time spent in the communication process. The present mi
is a domain decomposition method, so we took the two processors elapsed times a
referenced 100% scalability number.

Table V shows that the scalability decreases with the number of subdomains but
gives quite reasonable results for 16 processors. As predicted by the Gustafson’s law
scalability increases when the size of the global problemincreases, except when the pro
is too large M, = 128 M, = 128) because of the memory swap.

Table VI gives the efficiency of the method. In this test, the global size of useful mod
N1 is fixed once and for all. Thus, the size of the problRity P + N; on one processor
decreases when the number of procegsurcreases. In the table, we $étto be always 6.

TABLE VI
Parallel Efficiency of the T and C Solver

MZ = 64/Processors 2 4 8 16
N1=128,N, =6 100.0% 98.85% 90.47% 61.17%
N1=256,N, =6 100.0% 117.24% 122.88% 100.18%
N1=512,N, =6 100.0% 139.47% 173.40% 167.79%
MZ = 128/Processors 2 4 8 16
N1=128,N, =6 100.0% 98.43% 89.54% 62.77%

N1=256,N, =6 100.0% 115.56% 111.88%  99.85%
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TABLE VI
Influence ofky and the Number of Subdomain
on Efficiency of the Total Code

8 16 32 64
4 118.7% 117.6% 115.4% 114.5%
8 138.4% 136.4% 129.9% 121.9%

8 16 32 64 128
4 100.0% 98.43%  100.2% 99.42% 98.62%
8 116.4% 115.7% 115.0% 112.0% 100.5%

A method is a perfectly efficient if the time to solve a problem of sizen P processors

is P times less than the time to solve the same problem on one processor. The efficien
given by the ratio of the elapsed time on one processor Buanes the elapsed time dh
processors. However, as for the scalability table, we took the two processors elapsed
as the referenced 100% efficiency number.

Table VI points out that the efficiency is superlinear fbt = 256 andN1 = 512. This
superlinear efficiency comes mainly from the quadratic complexity of the matrix multip
approach used in thedirection combined with the efficiency of the cache memory when th
number of points in computational subdomain is small enough. However, for 16 process
the efficiency may drop because the global communication used to gather the inter!
problem data becomes time consuming.

e Second, we test the efficiency of up to eight processors of the complete combus
code, i.e., withT, C, ¥ solvers with algorithm Il and with respect to the cut off paramete
ko. The total number modH, is 160 and the number of modezrdirection isM, = 64 or
M, = 128. We set the number of time steps to be 5. Once again, because the methoc
domain decomposition method, we took the run on two processors as time reference fol
caseMz = 64. For the casd1z = 128, some memory constraints make us take the tim
on four processors as the reference time.

Table VIl summarizes the efficiencies obtained for this test. As expected, it exhibits tl
for two subdomains the levéh has no influence on the efficiency. The advantage of th
adaptive decoupling of algorithm Il becomes clear for eight processors. The superlin
behavior of the algorithm can be explained as above. Unfortunately, some constraint:
the resources of our memory channel do not allow us to test the efficiency on 16 proces:s

6. NUMERICAL RESULTS

We give first some numerical results with the reaction diffusion model and then sor
results on the combustion model with Navier—Stokes equations.

6.1. Results on the Reaction Diffusion System

Figure 5 gives the concentration and temperature profiles as well as the intermed
unknownsT; and C; profiles in each space direction for the reaction diffusion systen
The computing was done with, = 64 by M, = 128 modes on a physical domain of size
[0, 47] x [—25, 25].
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The Zeldovich number is equal to 7.8, the Rayleigh number is equal to 0 (no hydrodyne
ics), the Prandtl number B = 1, the mass diffusion is = 0.025. This stabilized solution
pattern was obtained after 500 units of time with a time stefstof= 0.005. The character-
istic pattern of the solution is given by the periodic appearance and disappearance in:
of one hot spot in the center of the domain or two symmetric hot spots along the wall. \
refer to [8] and its references for a precise description of this pattern formation. The me
mum temperature amplitude 1.2236 of the hot spots is 5.1% greater than those obtaine
our previous computation with adaptive domain decomposition and piecewise Chebyc
approximation [8], while the time periodicity of this instability is equal to 3.695, which i
0.95% slower than the time periodicity of previous computation. These results validate
splitting of the solutions in a time-dependent part and a determined profile.

6.2. FP Process in Liquid

To investigate the effect of the hydrodynamics on the previous thermal instabilities ¢
tained, we have to consider nonzero values of the Rayleigh number. We refer to [8] fc
detailed description of the competition’s mechanism between the thermal instabilities
the hydrodynamical instabilities 7.8, R= 5) and the gravity parallel to the combustion
propagation direction.

For completeness, we check that the methodology retrieves the same solution behavi
the methodology with domain decomposition with Chebychev piecewise approximatior
thez-direction and local Fourier basis without domain decomposition inttieection [8].

Figure 6 represents the effect of hydrodynamics on the previous computed solution v
(2 =17.8,R=0.5) and the gravity parallel to theedirection, the front combustion propaga-
tion direction. Solid lines represent the temperature isovalues, while dashed lines repre
the streamfunction isovalues. The flow structure, generated by the hot spot, transports ¢
heat to the fresh reactant. This preheating increases the combustion process, leadin
rise in the value of the hot spot at the center of the combustion front. When the hot spc
the center of the combustion front reaches the maximum value, it diffuses;ndinection
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FIG. 6. \Vertical case, (7.8, R=0.5,0 = 0°), isovalues ofl (solid lines) and¥V (dash lines).
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FIG. 7. Horizontal case, (& 7.8, R=1.5,0 = 90°), isovalues ofT (solid lines) andV (dash lines).

and creates new flow structures with opposite spin as the previous one. This behavior o
solution agrees with those of the solution obtained in [8].

This solution exhibits a quasi-planar front of combustion. We develop the present meth
ology to dispense with the quasi-planar front hypothesis made in the methodology of |
Indeed, when the gravity made a nonzero angle with the front propagation, we do not h
any guarantee that the front is still quasi-planar.

Figure 7 shows the effect of hydrodynamics on the structure of the flame front wt
the channel is horizontal and gravity vertical. Thin solid lines represent the temperat
isovalues while dash lines represent the streamfunction isovalues. The thick solid
represents the location of the front, centered on the levél sef).5. The computation was
done with a total ofNy = 112 by N, = 256 Fourier modes on a physical domain of size
[0, 47] x [0, 90]. The horizontak-direction is the direction of propagation of the front.
The Zeldovich number is equal to 6, the Rayleigh number is equal to 1, the Prandtl nurr
is P =1, the mass diffusion is given by= 0.02, and the time step is set ot = 0.01.
This solution is a traveling wave moving toward the left with a hot spot close to the t
wall of the horizontal channel. The location of the hot spot and the front curvature of t
concentration profile are closely related to the circular motion of the flow. This examj
shows that one can compute nonplanar flame front structure with local Fourier basis.
were not able to obtain this solution on reasonable elapse time with our previous methoc
because of the explicit character of theependency and the large number of subdomain
needed in the-direction.

7. CONCLUSIONS

We have developed and implemented a new methodology based on local Fourier
proximation and the superposition principle to solve nonspace periodic time-depenc



598 GARBEY AND TROMEUR-DERVOUT

PDE models. We illustrate the capabilities of the method on a reaction—diffusion syst
coupled to incompressible Navier—Stokes in two space dimensions that models fro
polymerization.

The accuracy of the local Fourier basis (LFB) is satisfactory compared to [8] for a qua
planar front, but the method presented in this paper is more robust since it allows
computation of a nonplanar flame front.

The parallel efficiency of LFB follows from the introduction of a one-dimensional domai
decomposition that avoids global transposition of matrices distributed on the network
processors. Artificial interface problems are defined adaptively depending on the w
number needed to minimize global communications.

The arithmetic complexity of the method is then dominated by subdomain’s Fouri
transforms. However, it should be noticed that LFB is sensitive to small time steppi
because of the artificial boundary layer of square roofbfthickness associated to so-
called corrector terms. Postprocessing with smooth filters might be the appropriate wa
overcome this difficulty [12]. In addition, the parallel scalability of the method is limited b
the incompressible size of the extension of each subdomain used to build periodic extens
In our opinion, LFB should be more attractive for large-scale computation in 3D with larg
parallel systems than the one we have used. Finally, let us notice that this methodoloc
well designed to be used with@(p, g, j) schemes [9IC(p, g, j) schemes are designed to
solve systems of coupled PDEs, such as the target application presented here. They re
the Fourier expansion of each PDE solution in order to adapt with respect to the wi
number the delay in the exchange of the coupling terms between PDES. This allows
to relax the penalty on communication between distributed PDEs in a distributed mem
parallel implementation. With the LFB methodology, the delay in the communication
the coupling terms can be set adaptively depending only on the PDE solution behavio
the subdomain.
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